Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Environ Res Public Health ; 19(13)2022 06 24.
Article in English | MEDLINE | ID: covidwho-1934035

ABSTRACT

Some studies have shown that contaminants can be transferred between floors and the soles, and there are few studies on pollutant propagation caused by human walking in real-life situations. This study explored the propagation and diffusion law of ground pollutants from rubber soles to poly vinyl chloride (PVC) floor during indoor walking through employing a fluorescent solution as a simulant. The footprint decay (D) and transfer efficiency (τ) of the fluorescent solution transferred from the sole to the indoor floor during walking were analyzed based on the fluorescent footprint imaging. The effects of namely body weight (50-75 kg), walking frequency (80-120 steps/min), and solution viscosity (oil and water) were also investigated. It was found that the total fluorescence gray value on the ground decreased exponentially as the number of walking steps (i) increased. The relationship between the normalized gray value of the fluorescent solution (D) on each floor panel i was Di=aebi,2.1≤a≤3.8,-1.4≤b≤-0.7, and τ was distributed in the range of 0.51-0.72. All influencing factors had a significant effect on a, and a greater body weight resulted in a smaller a value, while only the body weight had a significant effect on b and τ, and a greater body weight led to larger b and lower τ values.


Subject(s)
Floors and Floorcoverings , Walking , Body Weight , Humans , Reproduction , Rubber
2.
Inquiry ; 59: 469580221093442, 2022.
Article in English | MEDLINE | ID: covidwho-1865219

ABSTRACT

The novel coronavirus pandemic has led to morbidity and mortality throughout the world. Until now, it is a highly virulent contagion attacking the respiratory system in humans, especially people with chronic diseases and the elderly who are most vulnerable. A majority of afflicted are those suffering from cardiovascular and coronary diseases. In this review article, an attempt has been made to discuss and thoroughly review the mode of therapies that alleviate cardiac complications and complications due to hypercoagulation in patients infected with the SARS-CoV-2 virus. Presently a host of thrombolytic drugs are in use like Prourokinase, Retelapse, RhTNK-tPA and Urokinase. However, thrombolytic therapy, especially if given intravenously, is associated with a serious risk of intracranial haemorrhage, systemic haemorrhage, immunologic complications, hypotension and myocardial rupture. The effects of the SARS-CoV-2 virus upon the cardiovascular system and coagulation state of the body are being closely studied. In connection to the same, clinical prognosis and complications of thrombolytic therapy are being scrutinized. It is noteworthy to mention that myocardial oxygen supply/demand mismatch, direct myocardial cells injury and acute plaque rupture are the multiple mechanisms responsible for acute coronary syndrome and cardiac complications in Covid-19 infection. However, this review has limitations as data available in this context is limited, scattered and heterogenous that questions the reliability of the same. So, more multi-centric studies involving representative populations, carried out meticulously, could further assist in responding better to cardiac complications among Covid-19 patients.


Subject(s)
COVID-19 , Cardiovascular Diseases , Cardiovascular System , Aged , Cardiovascular Diseases/drug therapy , Humans , Reproducibility of Results , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL